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Abstract

At the mesoscopic scale, chemical processes have probability distributions that
evolve according to an infinite set of linear ordinary differential equations known
as the chemical master equation (CME). It is commonly believed that the CME
cannot be solved except for the most trivial of cases, but recent work has raised
questions regarding validity of this belief. For many cases, Finite State Projection
(FSP) techniques [1] can reduce the order of the CME to a solvable system while
retaining any prespecified error tolerance. Even when accuracy demands require a
projection that is too large to be solve efficiently, the FSP retains the linearity of the
CME, and is open to a host of additional model reductions and computational tech-
niques. In this paper, we develop a new algorithm based upon the linearity property
of super-positioning, and we illustrate the benefits of this algorithm on a simplified
model of the heat shock mechanism in E. coli. The new algorithm retains the full
accuracy of the original FSP algorithm, but with significantly increased efficiency
and a greater range of applicability.
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1 Introduction

When studying processes at the mesoscopic level, researchers often assume
that they evolve according to a continuous time, jump Markov process. In
this regime, the system is best described not in terms of individual trajectories
but in terms of how the system’s probability distribution evolves. For chemical
reactions, this distribution has been shown to evolve according to the infinite
dimensional linear ordinary differential equation (ODE) known as the chemical
master equation (CME) [2].

It is commonly believed that master equations, such as the CME, cannot be
solved except in the simplest of circumstances. This belief has driven the com-
putational research community to devise clever kinetic Monte Carlo (KMC)
algorithms to simulate system dynamics. Gilespie’s stochastic simulation al-
gorithm (SSA) is one such algorithm developed specifically for the CME [3].
In the SSA each reaction is simulated using two pseudo-random numbers–the
first tells when the next reaction will occur, and the second determines which
reaction it will be. The SSA is considered exact in the sense that if one were
to conduct the simulation an infinite number of times with an ideal random
number generator, the collected statistical data would converge to the exact
solution to the CME. Unfortunately, the convergence rate for any KMC rou-
tine is very slow; cutting the error in half requires four times the number of
simulations. Since a single simulation may contain huge numbers of individ-
ual reactions, the SSA may take far too long to be of any use. Researchers
have greatly improved efficiency of the SSA through various approximation
schemes. Some of these approximations are made by separating the fast dy-
namics from the slow [4–8]. During short periods of time, the fast dynamics
dominate, and the slow dynamics may be ignored. For long periods of time,
one averages out the fast dynamics equilibrate in order to emphasize the slow
dynamics. Other approximations are made by discretizing the time interval
into τ leaps and approximating the dynamics over those subintervals [9–14].
Both approximation types, system partitioning and τ leaping, have been very
successful in increasing the scope of problems to which KMC schemes such as
the SSA may be reasonably applied.

We recently developed the Finite State Projection algorithm as an additional
tool for the analysis of jump Markov processes [1]. Unlike KMC algorithms,
the FSP algorithm solves the CME to any prespecified degree of accuracy
without random number generation. The FSP approach is based upon linear
systems theory and works by projecting the intractable infinite dimensional
master equation onto a solvable finite dimensional space. Previous implemen-
tations of the FSP method have been very successful for some biologically
inspired systems [1,15], but for many problems the projection remains too
large to solve efficiently, and further model reductions are needed. While some
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of these reductions come from fields such as modern controls theory [16], oth-
ers are inspired from similar reductions applied to the KMC algorithms. For
example, as we show in [17,18], we can reduce the FSP significantly using time-
scale separation based system partitioning approaches. In the current work,
we further advance the FSP by exploring how some tools of time discretization
can also be used for the dramatic improvement of the FSP.

In the next section we provide some background on the basic FSP method. In
section 3 we illustrate how linearity of the FSP allows us to efficiently deal with
initial probability density vectors that contain many non-zero elements. In
section 4 we provide a multiple time step version of the FSP and demonstrate
its use with an example from the field of systems biology. Finally, in section
5, we conclude with remarks on the advantages of these approaches over the
original FSP and outline a few directions for future work on this topic.

2 The Finite State Projection Method

Although the finite state projection (FSP) method presented here is valid
for any continuous time, discrete space Markov process, we present it in the
context of the chemical master equation.

We consider a system of N chemically reacting species. The non-negative
populations of the N molecular species jointly define a unique configuration

of the system, x := [ ξ1 ξ2 . . . ξN ]T . By fixing a sequence x1,x2, . . . of elements

in NN we can define the ordered configuration set as X := [x1,x2, . . . ]T . Let
pi(t) denote the probability that the system will have the configuration xi

at time t. Under the assumptions that the system is continually well-mixed
and kept at constant volume and temperature, one can show that the system
evolves according to a discrete state, continuous time jump Markov process,
whose distribution, P = [p1, p2, . . .]

T , evolves according to the linear ordinary
differential equation known as the chemical master equation (CME) [19]:

Ṗ(t) = AP(t), (1)

The infinitesimal generator matrix, A, is defined by the reaction stoichiome-
tries and propensities and the choice of the enumeration of X. Like any gen-
erator matrix, A has the properties that all diagonal elements of are non-
positive; all off-diagonal elements are non-negative; and all columns sum to
zero. When the set X is finite dimensional, one can easily compute the solu-
tion P(tf ) = exp(Atf )P(0), but when the set X is infinite or extremely large,
the corresponding solution is unclear or vastly difficult to compute. For these
cases, we devised the Finite State Projection (FSP) method [1].
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To best review the FSP method and present our current work, we must first
introduce some convenient notation. Let J = {j1, j2, j3, . . .} denote an index
set to which the usual operations (

⋃
,

⋂
, etc.) and relations (⊂, ⊆, etc.) ap-

ply. Let J ′ denote the complement of the set J . If X is an enumerated set
{x1,x2,x3, . . .}, then XJ denotes the subset {xj1 ,xj2 ,xj3 , . . .}. Furthermore,
let vJ denote the subvector of v whose elements are chosen according to J ,
and let AIJ denote the submatrix of A such that the rows have been chosen
according to I and the columns have been chosen according to J . For example,
if I and J are defined as {3, 1, 2} and {1, 3}, respectively, then:

a b c

d e f

g h k


IJ

=


g k

a c

d f

 .

For convenience, let AJ := AJJ . We will also use an embedding operator,
DJ{.} as follows. Given any vector, v and its J indexed subvector, vJ , the
vector DJ {vJ} has the same dimension as v and its only non-zero entries are
the elements of vJ distributed according to the indexing set J . Finally, we will
use the vector ei to denote a vector with a one in the ith location and zeros
elsewhere. With this notation we can restate the following two theorems from
[1]:

Theorem 1 If A ∈ Rn×n has no negative off-diagonal elements, then for any
index set, J ,

[expA]J ≥ exp(AJ) ≥ 0. (2)

Theorem 2 Consider any Markov process in which the distribution evolves
according to the linear, time-invariant ODE:

Ṗ(t) = AP(t).

If for some finite index set J, ε > 0, and tf ≥ 0,

||exp(AJtf )PJ(0)||1 ≥ 1− ε, (3)

then
DJ {exp(AJtf )PJ(0)} ≤ P(tf ), (4)

and
||P(tf )−DJ {exp(AJtf )PJ(0)}||1 ≤ ε. (5)

Using the current notation, these theorems have been strengthened slightly
from their original form, but their proofs are easily found with slight modifi-
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cation to those presented in [1]. Theorem 1 guarantees that as we add points
to the finite configuration subset, the approximate solution monotonically in-
creases, and Theorem 2 provides a certificate of how close the approximation
is to the true solution. Together the two theorems suggest the FSP algorithm
presented in Ref [1]:

The Original Finite State Projection Algorithm

Inputs Propensity functions and stoichiometry for all reactions.
Initial probability density vector, P(0).
Final time of interest, tf .
Total amount of acceptable error, ε > 0.

Step 0 Choose an initial finite set of states, XJo , for the FSP.
Initialize a counter, i = 0.

Step 1 Use propensity functions and stoichiometry to form AJi
.

Compute ΓJi
= ||exp(AJi

tf )PJi
(0)||1.

Step 2 If ΓJi
≥ 1− ε, Stop.

DJi
{exp(AJi

tf )PJi
(0)} approximates P(tf ) to within a total error of ε.

Step 3 Add more states to find XJi+1
.

Increment i and return to Step 1.

For the basic FSP algorithm, if we wish to find a solution that is accurate
to within ε at a time tf , we must find a finite set of configurations such that
the probability of ever leaving that set during the time interval [0, tf ] is less
than ε. For many problems, including the examples shown in [1,15], this set of
configurations may be small enough that we can easily compute a single ma-
trix exponential to approximate the solution to the CME. However, in other
situations the configuration space required for a one matrix solution may be
exorbitantly large. In this work we utilize the linearity and time invariance of
the chemical master equation to address two such situations. First, in section
3 we extend the FSP to handle problems in which the initial probability dis-
tribution is supported over a large portion of the configuration space. Second,
in section 4 we address the problem that occurs when non-equilibrium distri-
butions tend to drift over time and cover large portions of the configuration
space.
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3 The FSP for Non-Sparse Initial Distributions

Although the original FSP method is valid for any initial probability distri-
bution, all examples in previous work [1,15–18] begin with a specific known
initial configuration; if the system begins in state k, the initial probability
distribution for the CME was written, pi(0) = δik, where δik is the Kronecker
delta. Suppose now that the initial distribution is given not by the Kronecker
delta but by a vector with many non-zero elements. For example, suppose that
the initial distribution is specified by the solution at the end of a previous time
step. From Theorem 2, in order for the original FSP algorithm to converge, we
must be able to find a set of states, XJ , that satisfies the stopping criterion:

||exp(AJtf )PJ(0)||1 ≥ (1− ε). (6)

Since the sum of the FSP solution at tf cannot exceed the sum of the truncated
initial pdv, PJ(0), we must always include at least as many states in the FSP
solution as is required such that ||PJ(0)||1 ≥ 1− ε. For a sparse pdv, such as
that generated by δik, this restriction on the size of the FSP solution is trivial: J
need only include k. However, when the initial pdv has broad support, the size
of the FSP solution may be much larger and therefore require the inefficient
calculation of very high-dimensional matrix exponentials. Fortunately, one can
use the property of superpositioning guaranteed by the linearity of the FSP
to mitigate this concern and recover some computational efficiency as we can
show in the following proposition.

Proposition 3 Superposition of FSP Solutions

Consider any Markov process in which the distribution evolves according to
the linear ODE:

Ṗ(t) = AP(t).

Let γ < 1, δ < 1 and tf ≥ 0. If there is an index set I such that:

||PI(0)||1 ≥ γ, (7)

and if for every i ∈ I, there is a corresponding index set Ji containing i such
that ∣∣∣∣∣∣exp(AJi

tf )e
i
Ji

∣∣∣∣∣∣
1
≥ δ, (8)

then, ∑
i∈I

piDJi

{
exp(AJi

tf )e
i
Ji

}
≤ P(tf ), (9)

and ∣∣∣∣∣
∣∣∣∣∣P(tf )−

∑
i∈I

piDJi

{
exp(AJi

tf )e
i
Ji

}∣∣∣∣∣
∣∣∣∣∣
1

≤ 1− γδ. (10)
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Proof. We begin by proving (9). If we define the index set If =
⋃

i∈I Ji, then
we have the relation,

DIf

{
exp(AIf

tf )PIf
(0)

}
=

∑
i∈If

pi(0)DIf

{
exp(AIf

tf )e
i
If

}
, (11)

Since I ⊆ If , we are guaranteed that

DIf

{
exp(AIf

tf )PIf
(0)

}
≥

∑
i∈I

pi(0)DIf

{
exp(AIf

tf )e
i
If

}
. (12)

Furthermore, since for every i, Ji ⊆ If and pi(0) ≥ 0, Theorem 1 guarantees
that,

DIf

{
exp(AIf

tf )PIf
(0)

}
≥

∑
i∈I

pi(0)DJi

{
exp(AJi

tf )e
i
Ji

}
. (13)

Furthermore, using the result from Theorem 1 that exp(AJtf ) is non-negative
for any index set J , and applying conditions (7) and (8) yields

∣∣∣∣∣∣DIf

{
exp(AIf

tf )PIf
(0)

}∣∣∣∣∣∣
1
≥

∣∣∣∣∣
∣∣∣∣∣∑
i∈I

pi(0)DJi

{
exp(AJi

tf )e
i
Ji

}∣∣∣∣∣
∣∣∣∣∣
1

≥ δ ||PI(0)||1
≥ δγ. (14)

Theorem 2 tells us that

DIf

{
exp(AIf

tf )PIf
(0)

}
≤ P(tf ),

and then from Eqn (13) we show that

∑
i∈I0

pi(0)DJi

{
exp(AJi

tf )e
i
Ji

}
≤ P(tf ), (15)

which is Eqn. (9).

Combining the fact that ||P(tf )||1 = 1 and inequality (14) gives:∣∣∣∣∣
∣∣∣∣∣∑
i∈I

pi(0)DJi

{
exp(AJi

tf )e
i
Ji

}∣∣∣∣∣
∣∣∣∣∣
1

≥
(
||P(tf )||1 − 1

)
+ δγ. (16)

Rearanging this result and applying 15 yields inequality (10)∣∣∣∣∣
∣∣∣∣∣P(tf )−

∑
i∈I

pi(0)DJi

{
exp(AJi

tf )e
i
Ji

}∣∣∣∣∣
∣∣∣∣∣
1

≤ 1− δγ (17)

and completes the proof.
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The result of Proposition 3 now enables us to modify the above FSP algo-
rithm to better handle situations in which the initial probability distribution
is non-sparse. Before stating this new algorithm, however, we would first like
to make a few notes to explain our choice of notation. First, although this
algorithm can be useful on its own, we will see below that it is most effective
as part of a multiple time step solution scheme. For this reason we will refer
to the initial time as tk and the final time as tk+1 = tk + τ . Second, the total
error of the current approach is separated into two components, ε = 1 − δγ,
where both γ and δ are numbers slightly less than 1 and will be considered as
independent inputs to the algorithm. Here γ refers to the required sum of the
truncated probability distribution at tk, and δ refers to the relative accuracy
requirement for the solution at tk+1 compared to the accuracy at tk. Third, for

added convenience we will use the notation Ei = DJi

{
exp(AJi

τ)ei
Ji

}
to de-

note the Ji indexed FSP approximation of the distribution at tk+1 conditioned
upon the ith configuration at tk. Any matrix exponential, exp(AJi

τ) provides
not only Ei but also approximations to Ej for every j ∈ Ji. Once we com-

pute these matrix exponentials, we will store every Ej = DJi

{
exp(AJi

τ)ej
Ji

}
and its corresponding index set Jj = Ji that meets our accuracy requirement
||Ej||1 ≥ δ. These are then reused to reduce the total number of matrix com-
putations. With this notation, we can now state the following algorithm:

The FSP Algorithm for Non-Sparse Initial PDV’s

Inputs Propensity functions and stoichiometry for all reactions.
Error Parameters, 0 ≤ γ < 1 and 0 ≤ δ < 1 .
Initial probability distribution, P(tk), where 1 ≥ ||P(tk)||1 ≥ γ
Length of time interval, τ .

Step 0 Choose a finite set of states, XIk
such that ||PIk

(0)||1 ≥ γ.
Initialize a counter, i as the first element in Ik.
Initialize the FSP solution index set: If = {i}.
Initialize the FSP solution summation to zero: PFSP

If
(tf ) = 0.

Step 1 If Ei has not already been calculated:
Use original FSP algorithm to find Ji and exp(AJi

τ) such

that
∣∣∣∣∣∣exp(AJi

τ)ei
Ji

∣∣∣∣∣∣
1
≥ δ.

For every j ∈ Ji, if
∣∣∣∣∣∣exp(AJi

tf )e
j
Ji

∣∣∣∣∣∣
1
≥ δ, then record

Ej = DJi

{
exp(AJi

tf )e
j
Ji

}
and Jj = Ji.

Step 2 Update the FSP solution index set: If = If
⋃

Ji.
Update the FSP solution summation: PFSP

If
= PFSP

If
+ piEi.
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Step 3 If i is the last element in I0, Stop.

DIf

{
PFSP

If
(tf )

}
approximates P(tf ) to within ε = 1− γδ.

Step 4 Increment i to the next element in I0 and return to Step 1.

These alterations in the FSP algorithm enable one to handle problems in which
the initial probability density vector is not sparse. On its own, this may be
convenient when we wish to study systems that begin somewhere within a
range of possible initial configurations. However, as we will illustrate in the
following section, the non-sparse FSP algorithm has its greatest use when it
is integrated into a multiple time stepping FSP algorithm.

4 The Multiple Time Step FSP Method

Suppose that we require that the FSP solution is precise to a 1-norm error
of ε for the entire time interval (0, tf ). This requires that the system remains
with probability (1-ε) within the finite set XJ for all times t ∈ (0, tf ). One can
envision many simple cases where such a restriction can require an exorbitantly
large space XJ . Suppose our system begins with an initial condition at t = 0
far from the support of the distribution at the later time t6 as illustrated in
Figure 1a. In this case the probability distribution is likely to evolve along
some path connecting the initial condition to the final solution. To achieve
acceptable accuracy at all times, the projection region must contain not only
the initial condition and the final solution, but also every point likely to be
reached during the intervening time. In such a circumstance, it can help to
break the time interval into pieces and require only that the FSP criteria are
satisfied only during each sub-interval. In effect, we seek a changing projection
space that follows the support of the distribution as it evolves. To do this, we
utilize the linearity and time invariance properties of the chemical master
equation.

Suppose we start with a known initial probability distribution, P(0), and we
wish to approximate the solution to the CME in k time steps of equal length
τ . Using the algorithm in the previous section, we can specify a positive δ < 1
and require that transition vectors {Ei} satisfy ||Ei||1 ≥ δ for all i. For the first
time step, suppose that we simply specify γ1 = δ and we use the non-sparse
FSP algorithm to find an approximation of the distribution at t1 = τ such that

0 ≤ DI1

{
PFSP

I1
(t1)

}
≤ P(t1) and

∣∣∣∣∣∣PFSP
I1

(t1)
∣∣∣∣∣∣

1
≥ γ1δ = δ2.

For the second time step, we use PFSP
I1

(t1) as the initial distribution. If we
use the same δ, we can save some effort by reusing some of the Ei’s already
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computed. However, since our solution at the end of the previous step has a
guaranteed sum of only δ2, we must choose a different γ2. A very reasonable
choice is simply to use the guarantee from the previous step: γ2 = δ2. With
this choice, we can again apply the non-sparse FSP algorithm to find an FSP
solution at the end of the second time step such that

0 ≤ DI2

{
PFSP

I2
(t2)

}
≤ P(t2) and

∣∣∣∣∣∣PFSP
I2

(t2)
∣∣∣∣∣∣

1
≥ δ3.

Following this example, at each kth step, if we use γk = δk, then we will recover
a solution such that

0 ≤ DIk

{
PFSP

Ik
(tk)

}
≤ P(tk) and

∣∣∣∣∣∣PFSP
Ik

(τ)
∣∣∣∣∣∣

1
≥ δk+1.

If we apply the fact that ||P(tk)||1 = 1, we have∣∣∣∣∣∣PFSP
Ik

(τ)
∣∣∣∣∣∣

1
≥ (||P(tk)||1 − 1) + δk+1,

which after some rearranging yields∣∣∣∣∣∣P(tk)−DIk

{
PFSP

Ik
(τ)

}∣∣∣∣∣∣
1
≤ 1− δk+1.

Suppose that we wish to find a solution that is within ε of the exact solution of
the CME at tf = Kτ . Following the ideas above, we would choose δ according

to the relation ε = 1− δk+1, or δ = (1− ε)
1

K+1 . This procedure is stated more
formally in the following algorithm.

The Multiple Time Step FSP Algorithm

Inputs Propensity functions and stoichiometry for all reactions.
Initial probability distribution, P(t0).
Final time of interest, tf .
Total error, ε > 0.

Step 0 Choose the number of time steps, K, and calculate τ = tf/K.

Compute the required sum for each Ei, δ = (1− ε)
1

K+1 .
Initialize time step counter: k=0.
Choose initial time index set, I0, such that ||PI0(t0)||1 ≥ δ.
Initialize the FSP approximate solution at t0, PFSP

I0
(t0) = PI0(t0).

Step 1 Run the Non-Sparse FSP algorithm with the initial condition PFSP
Ik

(tk),
and error parameters δ and γk = δk+1 and get PFSP

Ik+1
(tk+1).

Step 2 If k + 1 = K, then Stop.

DIK

{
PFSP

IK
(tK)

}
approximates PIk

(tf ) to within ε.

10



Specified Initial 
Condition (t=0)

Distribution 
at t=6τ

Solution Path Projection Required for 
1-step Solution

(0,τ]

(2τ,3τ]

(3τ,4τ]

(4τ,5τ]

(5τ,6τ]

(τ,2τ]

Projections Required 
for each time step Leaps between each 

time step

(a) (b)

(c) (d)

(0,τ]
(τ,2τ]

(2τ,3τ]

(3τ,4τ]

(4τ,5τ]

(5τ,6τ]

Fig. 1. Schematic of the Multiple Time Step FSP method. (a) We are given a
Markov process that begins at a known initial point in the configuration space.
As the probability distribution evolves, it follows a long path in the configuration
space such that at time t6 the distribution is supported in a region far from the
initial condition. (b) In order to find a sufficiently accurate FSP solution for all
times in the interval [0, 6τ ], the FSP must include not only the initial condition and
the final distribution, but also all points along the path. (c) To save computational
effort, one can discretize the time interval into smaller intervals and find overlapping
projections that need only satisfy the accuracy requirements during those shorter
periods of time. Here the final distribution of each time step (shown in grey) becomes
the initial distribution for the next time step (shown in black). (d) The end result
is a discrete map taking the distribution from one instant in time to the next.

11



Step 3 Increment k and return to Step 1.

To see how one may benefit from this modification to the FSP algorithm, we
refer to Figure 1. Suppose that we are interested in finding the distribution
at time t = 6τ of a Markov process that begins in the known initial config-
uration represented by the black dot. Even though the distribution at each
of the times {0, τ, 2τ, . . . , 6τ} are supported on only a small portion of the
configuration space, the one shot FSP solution must include the whole region
of the configuration space that is swept by the distribution between 0 and 6τ
(see Fig 1b). Therefore, the one step FSP algorithm requires a large matrix
exponential computation. By splitting the full interval into six subintervals as
shown in Fig. 1c, we will require more exponential computations, but since
each of these computations will be much smaller, the total computational ef-
fort may be much less. The following subsection illustrates the use of this
algorithm through a simplified model of the heat shock response in E-coli.

4.1 Toy Heat Shock Example

When a cell’s environment changes, that cell must either adapt or perish.
Continually faced with this choice, life has evolved to contain many complex
gene regulatory networks that allow for quick and precise adaptation. The
heat shock response in E. coli is excellent example of one such mechanism
[20]. A simplified version of this system consists of three biochemical species
that interact according to a set of three reactions,

s1 
 s2 → s3, (18)

where s1, s2 and s3 correspond to the σ32-DnaK complex, the σ32 heat shock
regulator and the σ32-RNAP complex, respectively. This model of the heat
shock subsystem has been analyzed before using various computational meth-
ods including Monte Carlo implementations [7,21] as well as the FSP with the
multiple time-scale model reduction [17]. Here we use this model in order to
illustrate our current computational algorithm.

We will take the reaction rates and initial configuration for the system to be:

c1 = 10, c2 = 4× 104, c3 = 2, s1(0) = 2000, s2(0) = s3(0) = 0. (19)

For these parameters there are 2,001,000 reachable configurations, and the full
chemical master equation is far too large to be solved exactly. Applying the
Finite State Projection method allows us to significantly reduce the order of
the problem and achieve a manageable solution at least for small time intervals
(t ≤ 300s). In order to retain accuracy in the solution to an error of ε = 10−3

at a time tf = 100s, we need include the 1430 configurations where s3 ≤ 129
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Fig. 2. Probability distribution of the population of the σ32-RNAP complex at 100,
200 and 300 seconds as computed with the basic FSP algorithm (solid line) and
with the Multiple Time Step FSP algorithm (dotted line).

and s2 ≤ 10. For larger time intervals, we need to include more points in
the FSP solution: for tf = 200s, we need include 2585 configurations where
s3 ≤ 234 and s2 ≤ 10; and for tf = 300s, we need include 3641 configurations
where s3 ≤ 330 and s2 ≤ 10. The solid lines in Figure 2 present the probability
distributions for the number of s3 molecules at 100, 200 and 300s, and the top
section of Table 1 summarizes the computational requirements necessary to
achieve these results with the basic FSP algorithm. We have also applied the
multiple time step FSP algorithm to the toy heat shock model in order to
compute the probability distribution at these same times. As a first attempt,
we have used a step size of five seconds. Figure 2 shows that there is no
discernible difference between the results of the basic FSP algorithm and those
of the multiple time step FSP algorithm. For a comparison of computational
efforts, the bottom half of Table 1 provides the maximum matrix size, number
of matrices, and computational time required for the multiple time step FSP
algorithm. As the total time increases from 100 to 300 seconds, so does the
computational benefit of the discretized algorithm; for a final time of 100, the
current algorithm reduces computational time by a factor of about 2.5, for a
final time of 300, the reduction is a factor of about 11.8.

Of course, while the accuracy of the multiple time step FSP is guaranteed, the
efficiency of the algorithm will undoubtedly depend upon our chosen step size.
Figure 3 illustrates some of the subtleties of this tradeoff by plotting the size of
the largest exponentiated matrix, the number of matrix exponentials, and the
computational time all as functions of the number of time steps (bottom axis)
and the step length (top axis). As we use more time steps, the probability
distribution has less time to disperse between one step and the next, and
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the required matrix exponentials are smaller as shown in Fig. 3a. However,
because the matrix dimension is a discrete integer quantity, this decrease is
stepwise rather than smooth, and a large range of step lengths may require
the same matrix size. If a step length is at the low end of that range, the
matrix exponentials required to get each Ei are often slightly more precise
than is absolutely necessary, and are therefore more likely to provide other
Ej’s as well–fewer exponential computations are necessary. Conversely, if a
step length is at the high end of the range for a given matrix size, fewer Ej’s
will come from each exponential computation–more exponential computations
are necessary. This trend is clear when one compares Fig 3a to 3b.

In order to show how these concerns affect the computation, we have broken
the total computational cost in Fig 3c; into two components. The first cost is
that of computing the matrix exponentials. The second cost is that of updating
the solution from one step to the next. For tf = 300s, this tradeoff is optimized
for 130 time steps corresponding to a interval length of τ ≈ 2.3s. To obtain
the solution with this time step, the algorithm needed to compute 50 matrix
exponentials of size 198 × 198 or smaller, and the computation takes about
28s.

Extrapolating from Table 1(top) suggests that a regular FSP solution at
t = 1000s would require inclusion of more than 11000 configurations. Un-
fortunately, the memory requirement to exponentiate a 11000× 11000 matrix
exceeds the specifications of our machine, and the unmodified FSP algorithm
cannot be used. Alternatively, by discretizing the full time interval, we can
significantly reduce the computational complexity and bring the model back
into the realm of a solvable problem. Once again, there is a definite tradeoff
between too many and too few time steps, and Figure 4 plots the the size of
the largest exponentiated matrix, the number of matrix exponentials, and the
computational time as a function of the number of time steps. For tf = 1000s,
the computational tradeoff is optimized for 290 time steps corresponding to a
interval length τ ≈ 3.4. To obtain the solution with this time step, the algo-
rithm needed to compute 107 matrix exponentials of size 252×252 or smaller,
and the computation takes about 166s.

5 Conclusions

Although the original finite state projection method can significantly reduce
the order of the chemical master equation for many problems, this initial re-
duction is not sufficient for all systems. Fortunately, the FSP is amenable to
numerous modifications, which can considerably improve upon the method’s
range and potency. In this paper we have concentrated on one computational
difficulty that arises when system trajectories slowly drift over large regions of
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15



0

200

400

600

0

100

200

300

400

0 250 500 750 1000 1250 1500
0

100

200

300

400

Number of time steps

Time Step Length (s)
4 2 4/3 1 5/4 3/2

Maximum 
Matrix Size

# of Matrix 
Exponentials

Computational Effort

Total Overhead

Matrix Exponentials

Fig. 4. Trade off between more and fewer time steps in the Multiple Time Step
FSP (MTS-FSP) algorithm solution for the toy heat shock model at a final time of
tf = 1000s. The following are plotted as function of the number of steps: (top) the
size of the largest required matrix exponential computation, (middle) the number
of matrix exponential computations performed, (bottom) the computational time
required for the MTS-FSP algorithm split into two components: the exponential
computation costs, and the overhead costs. All computations have been performed
in Matlab 7.2 on a Dual 2 Ghz PowerPC G5.

16



Table 1
Comparison of the computational requirements of the basic FSP algorithm and the
Multiple Time Step FSP (MTS-FSP) algorithm for the toy heat shock example
for three different final times: tf = 100, 200, and 300 seconds. For the MTS-FSP
algorithm results in this table, we have used a non-optimal step size of 5 seconds,
different step sizes will provide the same accuracy at a lower computational cost.

Original FSP Algorithm

Final Time (s) Matrix Size Comp. Time a (s) Error ‖.‖1

100 1430× 1430 27 9.61× 10−4

200 2585× 2585 165 9.04× 10−4

300 3641× 3641 437 9.67× 10−4

1000 ≈ 11000× 11000

Multiple Time Step FSP Algorithm

Final Time (s) # Exponentials Matrix Size Comp. Time (s) Error ‖.‖1

100 14 275× 275 11 2.84× 10−4

200 27 275× 275 23 4.25× 10−4

300 39 275× 275 37 5.08× 10−4

1000 104 252× 252 180 1.8× 10−4

a Computations have been performed in Mat-
lab 7.2 on a Dual 2 GHz PowerePC G5

the configuration space during long time intervals. In order to use the original
FSP method for these cases, one must include vast portions of the configura-
tion space in the projected solution. As the size of the included configuration
space increases, so do the computational requirements of the FSP. However,
in some cases this difficulty can be ameliorated simply by solving the FSP for
a series of smaller time intervals. Here we have presented the Multiple Time
Step FSP (MTS-FSP) algorithm, which is essentially an incremental approach
to solving the original FSP.

The MTS-FSP algorithm is built upon three important aspects that the FSP
inherits from the chemical master equation: linearity, time-invariance, and pos-
itivity. The linearity of the FSP allows us to apply the principle of superposi-
tion with regards to initial conditions–if we know the probability distribution
at time 0 and we know the conditional probabilities at time τ conditioned
on each configuration at time 0, then we can easily compute the probability
distribution at time τ . The time invariance of the FSP assures us that if we
know the probabilities at time τ conditioned on time 0, then we also know the
probabilities at time t+τ conditioned on any time t. The positivity of the FSP
guarantees us that we never over-predict the solution to the CME. Whether
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we neglect some portion of the initial probability distribution or lose some of
that distribution to configurations excluded from our various projections, the
resulting error is known at the end of each time step. By directly controlling
the error at each time-step, we can control the final error.

We have demonstrated the MTS-FSP algorithm on the toy heat shock prob-
lem. For time intervals of one, two and three hundred seconds the FSP and the
current algorithm produce nearly identical results, but with the new method,
we can compute those results much faster. In addition, the new algorithm
extends the range of problems to which the FSP approach may be applied.
To solve the toy heat shock problem over a time interval of one thousand
seconds, original FSP algorithm requires a configuration space of over 11000
points, which is too large to manage. However, we can now easily solves the
problem using matrices less than one thirtieth of the size.

This time stepping approach is just one of many mutually beneficial improve-
ments that are quickly expanding the ability of the FSP to directly solve the
chemical master equation. This current approach retains the full accuracy and
properties of the original FSP and can easily be combined with other model
reduction techniques such as those based linear systems and modern control
theory. While we may never be able to directly solve every master equation,
it remains to be seen just how far these FSP based approaches can push back
the boundary between solvable and unsolvable.
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